Skip to main content
\(\newcommand{\domain}{\operatorname{Dom}} \newcommand{\range}{\operatorname{Ran}} \newcommand{\identity}{\mathrm{id}} \newcommand{\negate}{\sim\negmedspace} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Logic and Proof for Teachers
Lesa L. Beverly, Kimberly M. Childs, Thomas W. Judson, Deborah A. Pace
Contents
Index
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Colophon
Preface
Contributors to the 2019 Edition
1
Logic
Definitions
Compound Statements
Tautologies, Contradictions, & Quantifiers
Propositional Functions and Quantifiers
2
Arguments and Proofs
Deductive Reasoning
Three Forms of Valid Arguments
Proofs
3
Sets
Sets
4
Relations
Relations
Equivalence Relations
Functions and Cardinality
5
Integers and the Division Algorithm
Mathematical Induction
The Division Algorithm
Prime Numbers
Back Matter
A
More on the Integers
Strong Induction
The Connection between Mathematical Induction and the Principle of Well Ordering
The Proof of the Fundamental Theorem of Arithmetic
B
Notation
C
GNU Free Documentation License
Index
Colophon
Authored in PreTeXt
Logic and Proof for Teachers
Lesa L. Beverly
Department of Mathematics and Statistics
Stephen F. Austin State University
beverlyll@sfasu.edu
Kimberly M. Childs
Department of Mathematics and Statistics
Stephen F. Austin State University
kchilds@sfasu.edu
Thomas W. Judson
Department of Mathematics and Statistics
Stephen F. Austin State University
judsontw@sfasu.edu
Deborah A. Pace
Department of Mathematics and Statistics
Stephen F. Austin State University
dpace@sfasu.edu
October 24, 2019
Colophon
Preface
Contributors to the 2019 Edition
login