1. (3 points) Assume that R is a commutative ring with identity. Prove that R is a field if and only if 0 is a maximal ideal.

Solution:

2. (3 points) Assume that R is a commutative ring with identity. Prove that if P is a prime ideal of R and P contains no zero divisors then R is an integral domain.

Solution:

3. Let $x^2 + x + 1$ be an element of the polynomial ring $E = \mathbb{F}_2[x]$ and use the bar notation to denote the passage to the quotient ring $\mathbb{F}_2[x]/(x^2 + x + 1)$.

 (a) (3 points) Prove that \bar{E} has 4 elements: $\bar{0}$, $\bar{1}$, \bar{x}, and $\bar{x+1}$.

 Solution:

 (b) (3 points) Write out the 4×4 addition table for \bar{E} and reduce that the additive groups \bar{E} is isomorphic to the Klein 4-group.

 Solution:

 (c) (3 points) Write out the 4×4 multiplication table for \bar{E} and prove that \bar{E}^\times is isomorphic to the cyclic group of order 3. Deduce that \bar{E} is a field.
4. (3 points) Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a maximal ideal.

Solution:

5. (5 points) Prove that any subfield of \mathbb{R} must contain \mathbb{Q}.

Solution: