Skip to main content
\(\newcommand{\trace}{\operatorname{tr}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imaginary}{\operatorname{Im}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

ChapterReadings and References

Gregory V. Bard. Sage for Undergraduates. American Mathematical Society, Providence, 2015.
Paul Blanchard, Robert L. Devaney, & Glen R. Hall. Differential Equations, third edition. Brooks/Cole, Pacific Grove, CA, 2006.
Robert L. Borrelli & Courtney S. Coleman. Differential Equations: A Modeling Perspective, Second edition. John Wiley & Sons, New York, 2004.
William E. Boyce & Richard C. Diprima. Elementary Differential Equations and Boundary Value Problems, Eighth edition. John Wiley & Sons, New York, 2005.
Brauer, F. & C. Castillo-Chávez. Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics 40. Springer, New York, 2001.
Martin Braun. Differential Equations and Their Applications: An Introduction to Applied Mathematics, Fourth edition. Springer-Verlag, New York, 1992.
Nicholas Britton. Essential Mathematical Biology. Springer Undergraduate Series. Springer, New York, 2003.
Richard L. Burden & Douglas Faires. Numerical Analysis, Eighth edition Brooks/Cole, Pacific Grove, CA, 2005.
Ward Cheney & David Kincaid. Numerical Mathematics and Computing. Fifth edition. Brooks/Cole, Pacific Grove, CA, 2004.
C. Henry Edwards & David E. Penney. Elementary Differential Equations with Boundary Value Problems. Fifth edition. Prentice Hall, Upper Saddle River, NJ, 2004.
Elton, C. S. & M. Nicholson. “The ten year cycle in the numbers of lynx in Canada,” Journal of Animal Ecology. 11(1942), pp.215–244.
Morris W. Hirsch, Stephen Smale, & Robert L. Devaney. Differential Equations, Dynamical Systems, & an Introduction to Chaos, Second edition. Academic Press, San Diego, 2004.
L. D. Humphreys and R. Shammas. Finding unpredictable behavior in a simple ordinary differential equation, College Mathematics Journal 31(2000) 338–346.
A. C. Lazer and P. J. McKenna. Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Review 32(1990) 537–578.
Edward N. Lorenz. “Deterministic nonperiodic flow,” Journal of Atomospheric Science 20(1963), pp. 130–141.
Donald Ludwig, Dixon D. Jones, & Crawford S. Holling. “Qualitative analysis of insect outbreak systems: the spruce budworm and forest,” The Journal of Animal Ecology (1978), pp. 315–332.
K. W. Malcolm, N. B. Sze, & J. Prather. “Better protection of the ozone layer,” Nature 367(1994), pp. 505–508.
P. J. McKenna. Large torsional oscillations in suspension bridges revisited: fixing an old approximation, American Mathematical Monthly 106(1999) 1–18.
P. J. McKenna and Cillian Ò Tuama. Large torsional oscillations in suspension bridges visited again: vertical forcing creates torsional response, American Mathematical Monthly 108(2001) 738–745.
Perelson, A. S. & P. W. Nelson. “Modeling Viral Infections” in An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology. American Mathematical Society, Providence, 2002.
John Polking, Albert Boggess, & David Arnold. Differential Equations with Boundary Value Problems, second edition. Prentice Hall, Upper Saddle River, NJ, 2006.
Clifford Henry Taubes. Modeling Differential Equations in Biology, second edition. Cambridge University Press, Cambridge, U.K., 2008.