Skip to main content
\(\newcommand{\trace}{\operatorname{tr}} \newcommand{\real}{\operatorname{Re}} \newcommand{\imaginary}{\operatorname{Im}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

ChapterReadings and References

[1]
  
Gregory V. Bard. Sage for Undergraduates. American Mathematical Society, Providence, 2015.
[2]
  
Paul Blanchard, Robert L. Devaney, & Glen R. Hall. Differential Equations, third edition. Brooks/Cole, Pacific Grove, CA, 2006.
[3]
  
Robert L. Borrelli & Courtney S. Coleman. Differential Equations: A Modeling Perspective, Second edition. John Wiley & Sons, New York, 2004.
[4]
  
William E. Boyce & Richard C. Diprima. Elementary Differential Equations and Boundary Value Problems, Eighth edition. John Wiley & Sons, New York, 2005.
[5]
  
Brauer, F. & C. Castillo-Chávez. Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics 40. Springer, New York, 2001.
[6]
  
Martin Braun. Differential Equations and Their Applications: An Introduction to Applied Mathematics, Fourth edition. Springer-Verlag, New York, 1992.
[7]
  
Nicholas Britton. Essential Mathematical Biology. Springer Undergraduate Series. Springer, New York, 2003.
[8]
  
Richard L. Burden & Douglas Faires. Numerical Analysis, Eighth edition Brooks/Cole, Pacific Grove, CA, 2005.
[9]
  
Ward Cheney & David Kincaid. Numerical Mathematics and Computing. Fifth edition. Brooks/Cole, Pacific Grove, CA, 2004.
[10]
  
C. Henry Edwards & David E. Penney. Elementary Differential Equations with Boundary Value Problems. Fifth edition. Prentice Hall, Upper Saddle River, NJ, 2004.
[11]
  
Elton, C. S. & M. Nicholson. “The ten year cycle in the numbers of lynx in Canada,” Journal of Animal Ecology. 11(1942), pp.215–244.
[12]
  
Morris W. Hirsch, Stephen Smale, & Robert L. Devaney. Differential Equations, Dynamical Systems, & an Introduction to Chaos, Second edition. Academic Press, San Diego, 2004.
[13]
  
L. D. Humphreys and R. Shammas. Finding unpredictable behavior in a simple ordinary differential equation, College Mathematics Journal 31(2000) 338–346.
[14]
  
A. C. Lazer and P. J. McKenna. Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Review 32(1990) 537–578.
[15]
  
Edward N. Lorenz. “Deterministic nonperiodic flow,” Journal of Atomospheric Science 20(1963), pp. 130–141.
[16]
  
Donald Ludwig, Dixon D. Jones, & Crawford S. Holling. “Qualitative analysis of insect outbreak systems: the spruce budworm and forest,” The Journal of Animal Ecology (1978), pp. 315–332.
[17]
  
K. W. Malcolm, N. B. Sze, & J. Prather. “Better protection of the ozone layer,” Nature 367(1994), pp. 505–508.
[18]
  
P. J. McKenna. Large torsional oscillations in suspension bridges revisited: fixing an old approximation, American Mathematical Monthly 106(1999) 1–18.
[19]
  
P. J. McKenna and Cillian Ò Tuama. Large torsional oscillations in suspension bridges visited again: vertical forcing creates torsional response, American Mathematical Monthly 108(2001) 738–745.
[20]
  
Perelson, A. S. & P. W. Nelson. “Modeling Viral Infections” in An Introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology. American Mathematical Society, Providence, 2002.
[21]
  
John Polking, Albert Boggess, & David Arnold. Differential Equations with Boundary Value Problems, second edition. Prentice Hall, Upper Saddle River, NJ, 2006.
[22]
  
Clifford Henry Taubes. Modeling Differential Equations in Biology, second edition. Cambridge University Press, Cambridge, U.K., 2008.