1.5 Modeling with Quadratic Equation

Learning Objectives:
- Solve geometry problems (especially including the Pythagorean Theorem).
- Find the height of a projectile.
- Find the time it takes a projectile to reach a given height.
- Create a model using quadratic equations.

Box Problem

From each corner of a square piece of sheet metal, remove a square of size 9 centimeters. Turn up the edges to form an open box. If the box is to hold 144 cubic centimeters (cm^3), what should be the dimensions of the piece of sheet metal?

Step 1: Draw and label a picture.

Step 2: Define variables.

Step 3: Determine if there is a special formula needed and substitute the given information into the formula.

Step 4: Write equation in standard form.

Step 5: Simplify and Factor.
Step 6: Use Zero-Product Property (set each factor equal to zero)

THE ANSWER IS … ____________________________.

A Pythagorean Theorem Problem

How many right triangles have a hypotenuse that measures $2x + 3$ meters and legs that measure $2x - 5$ meters and $x + 7$ meters? What are the dimensions of the triangle(s)?

Step 1: Draw and label a picture.

Step 2: Define variables.

Step 3: Determine if there is a special formula needed and substitute the given information into the formula.
Step 4: Write equation in standard form.

\(a = \) __________
\(b = \) __________
\(c = \) __________

Evaluate the discriminant: _________________________________

How many triangles do we have? ______________________________

Step 5: Factor or use Quadratic Formula.

Quadratic Formula: _________________________________

Step 6: Solve.

Step 7: Check your answers.

THE ANSWER IS … _________________________ and ________________________.

The Height of a Projectile

The height of an object that is projected into the air at \(v_0 \) feet per second from an initial height of \(h_0 \) feet is given by
where \(h \) is the height in feet and \(t \) is the time after the initial launch in seconds. The equation does not account for air resistance.

1. If a rock is dropped from the Golden Gate Bridge (220 feet above the water), when will it hit the water? Give your answer to the nearest tenth of a second.

Because height is ____

Add ____ to both sides

Divide both sides by ____

Square Root Property

Approximate

The ANSWER is... ________________.

2. If a rock is tossed upward at a velocity of 10 ft/sec from the Golden Gate Bridge so that it lands in the water, when will it hit the water? Give your answer to the nearest tenth of a second.

Because height is ____

Quadratic Formula

Approximate

The ANSWER is... ________________.

3. If a rock is thrown upward at a velocity of 40 ft/sec from the Golden Gate Bridge, when will the rock be 230 feet above the water? Give your answer to the nearest tenth of a second.

Because height is ____

Subtract ___ from both sides

Quadratic Formula

Approximate

The ANSWER is... ________________.

A Projectile Problem

Formula: ____________________________

Tia stands on top of the Bank of America building in Dallas, 921 ft. above the sidewalk.

a. If she drops a water bottle off the edge how long will it take the water bottle to hit the ground?

__________________________________ \(H \) is ____ and \(V_0 \) is ____
__________________________________ Add ____ to both sides
Divide both sides by ___

Take the square root of both sides

The ANSWER is… ______________.

b. If she throws the bottle up at a rate of 20 ft/sec, how long will it take to hit the ground?

H is ____ and \(V_0 \) is ____

Quadratic Formula

Approximate

The ANSWER is… ______________.

c. After how many seconds will the dropped bottle be 500 ft from the ground?

H is ____ and \(V_0 \) is ____

Subtract ___ from both sides

and Add ____ to both sides

Divide both sides by ___

Take the square root of both sides

The ANSWER is… ______________.