1. Consider the following graph:
 a. On what intervals (if any) is the graph increasing? \((-\infty, 0]\)
 decreasing? \([0, \infty)\)
 constant? \(none\)
 b. Is \(y\) a function of \(x\)? Explain your reasoning.
 \(yes, it\ passes\ VLT\)
 c. What is the domain? \((-\infty, \infty)\)
 d. What is the range? \((-\infty, -3]\)
 e. What is the equation of this graph?
 \[y = -|x| - 3\]

2. Find the slope and \(y\)-intercept of \(4x + 3y = 6\). Then graph the equation.
 \[4x + 3y = 6\]
 \[3y = -4x + 6\]
 \[y = -4/3x + 2\]
 \[slope = -4/3, y-int = 2\]

3. Find the equation of the line passing through the points \((4, 3)\) and \((-4, -4)\). Put your answer in slope-intercept form.
 \[m = \frac{3 - (-4)}{4 - (-4)} = \frac{7}{8}\]
 \[y - 3 = \frac{7}{8}(x - 4)\]
 \[y - 3 = \frac{7}{8}x - \frac{7}{2}\]
 \[m + \frac{3}{+\frac{3}{+\frac{7}{2}} + \frac{1}{2}}\]
 \[y = \frac{7}{8}x - \frac{7}{2}\]

4. Consider the following equation: \(-9x + 7y = 1\)
 a. Find the slope of a line parallel to the equation above.
 \[\frac{9}{7}\]
 b. Find the slope of a line perpendicular to the equation above.
 \[-\frac{7}{9}\]

5. Find the equation of the line parallel to \(x = 4\) and passing through \((1,3)\).
6. Let \(f(x) = \lceil 2x \rceil \).
 a. Find \(f(2.7) = \lceil 2(2.7) \rceil = \lceil 5.4 \rceil = 5 \)
 b. Find \(f(-3.59) = \lceil 2(-3.59) \rceil = \lceil -7.18 \rceil = -8 \)
 c. Sketch the graph of \(f(x) \).

7. Let \(f(x) = \begin{cases}
3x + 1 & \text{if } x < -3 \\
-1 & \text{if } x \geq -3
\end{cases} \)
 a. Find \(f(-5) = 3(-5) + 1 = -14 \)
 b. Find \(f(-3) = -1 \)
 c. Find \(f(3) = -1 \)
 d. Graph \(f(x) \).

8. Sketch the graph of \(f(x) = \sqrt{-x} + 2 \)

9. Sketch the graph of \(f(x) = -|x - 2| \)

10. Describe the sequence of transformations from \(f(x) = \sqrt{x} \) to \(y = -\sqrt{x} + 2 \).
 reflect across x-axis
 shift up 2 units

11. Consider the graph of \(f(x) = x^3 \). Write an equation for the transformation: the graph of \(f(x) \) is reflected across the y-axis, and shifted three units upward.
 \(f(-x) + 3 \)
 \[g(x) = (-x)^3 + 3 \]
 \[g(x) = -x^3 + 3 \]
12. Write the equation of the function $f(x) = x^2 + x - 1$ shifted right 2 and down 1.

$$f(x - 2) - 1$$

\[g(x) = (x - 1)^2 + (x - 1)^2 - 1 - 1 = x^2 - 4x + 4 + x - 2 - 2 \]

\[g(x) = x^2 - 3x \]

13. Use the graph of f (see figure) to sketch the graphs of g and h. Sketch them on the same axes as f and be sure to label your answers.

a. $g(x) = f(x - 2) + 1$

shift right 2
and up 1

b. $h(x) = -f(x) - 1$

reflect about x-axis
shift down 1

14. Determine whether the following are symmetric with respect to the x-axis, y-axis, origin, or none of these.

a. $y = 2x^4 - 3$

\[x\text{-axis:} \]
\[-y = 2x^4 - 3 \]
\[\text{no} \]

\[y\text{-axis:} \]
\[y = 2(-x)^4 - 3 \]
\[y = 2x^4 - 3 \]
\[\text{yes} \]

\[\text{origin:} \]
\[-y = 2(-x)^4 - 3 \]
\[-y = 2x^4 - 3 \]
\[\text{no} \]

b. $y^2 - x^2 = -6$

\[x\text{-axis:} \]
\[(-y)^2 - x^2 = -6 \]
\[y^2 - x^2 = -6 \]
\[\text{yes} \]

\[y\text{-axis:} \]
\[y^2 - (-x)^2 = -6 \]
\[y^2 - x^2 = -6 \]
\[\text{yes} \]

\[\text{origin:} \]
\[(-y)^2 - (-x)^2 = -6 \]
\[y^2 - x^2 = -6 \]
\[\text{yes} \]

15. Determine whether the following are even, odd, or neither.

a. $f(x) = x^5 - 2x^3$

\[f(-x) = (-x)^5 - 2(-x)^3 \]
\[= -x^5 - 2(-x^3) \]
\[= -x^5 + 2x^3 \]

\[\text{odd} \]

b. $f(x) = x^3 - x + 9$

\[f(-x) = (-x)^3 - (-x) + 9 \]
\[= -x^3 + x + 9 \]

\[\text{neither} \]
16. Give the vertex, axis of symmetry, domain, range, and graph of the quadratic \(f(x) = (x - 5)^2 - 4 \). Determine the intervals on which the function is increasing and interval on which the function is decreasing.

\[
\text{Vertex: } (5, -4) \\
\text{Axis: } x = 5 \\
\text{Domain: } (-\infty, \infty) \\
\text{Range: } [-4, \infty) \\
\text{Increasing: } [5, \infty) \\
\text{Decreasing: } (-\infty, 5]
\]

17. Give the vertex, axis of symmetry, domain, range, and graph of the quadratic \(f(x) = 2x^2 - 4x + 5 \). Determine the intervals on which the function is increasing and interval on which the function is decreasing.

\[
x = \frac{-b}{2a} = \frac{-(-4)}{2(2)} = \frac{4}{4} = 1 \\
\text{f(1)} = 2(1)^2 - 4(1) + 5 = 2 - 4 + 5 = 3 \\
\text{f(0)} = 2(0)^2 - 4(0) + 5 = 5
\]

18. Do the following tables describe a functions? State why or why not?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>7</td>
<td>4.4</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>5</td>
<td>3.3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Yes, every domain maps to exactly one range.

No, domain 4 maps to two different ranges.

19. Consider the function \(f(x) = \sqrt{x + 1} \).

a. Find \(f(0) \).

\[
f(0) = \sqrt{0 + 1} = \sqrt{1} = 1
\]

b. Find \(f(t - 2) \).

\[
f(t - 2) = \sqrt{t^2 - 4 + 1} = \sqrt{t^2 - 1}
\]

c. Find the domain of \(f(x) \).

\[
\begin{align*}
x + 1 & \geq 0 \\
x & \geq -1 \\
D & = [-1, \infty)
\end{align*}
\]
20. Consider the function \[f(x) = \frac{\sqrt{x+2}}{x-7}. \]
 a. Find \(f(0) \).
 \[
 f(0) = \frac{\sqrt{0+2}}{0-7} = \frac{\sqrt{2}}{-7} = -\frac{\sqrt{2}}{7}
 \]
 b. Find \(f(t-2) \).
 \[
 f(t-2) = \frac{\sqrt{t-2+2}}{t-2-7} = \frac{\sqrt{t}}{t-9}
 \]
 c. Find the domain of \(f(x) \).
 \[
 x - 7 \neq 0 \\
 x + 2 \geq 0 \\
 x \neq 7 \\
 D: [-2, 7) \cup (7, \infty)
 \]

21. Find the domain of.
 \[h(x) = \frac{10x-5}{x^2-2x} \]
 \[
 x^2 - 2x = 0 \\
 x(x-2) = 0 \\
 x = 0 \text{ or } x = 2
 \]
 \[
 D: (-\infty, 0) \cup (0, 2) \cup (2, \infty)
 \]

22. A function is used it calculate the number of mopeds, \(m \), built in a factory that employs \(h \) hours of employee work. If the formula is \(m = 60h + 3h^2 - 0.02h^3 \), what is the domain of the function?
 \[
 D: [0, \infty) \quad \text{You can't work a negative amount of hours.}
 \]

23. Let \(f(x) = 2x - 3 \) and \(g(x) = 1 - x \). Find the following and simplify:
 a. \((f-g)(x) = f(x) - g(x) = 2x - 3 - (1-x) = 3x - 4\)
 b. \((fg)(x) = f(x)g(x) = (2x-3)(1-x) = 2x - 2x^2 - 3 + 3x = -2x^2 + 5x - 3\)
 c. \((\frac{f}{g})(-2) = \frac{f(-2)}{g(-2)} = \frac{2(-2)-3}{1-(-2)} = \frac{-4-3}{3} = \frac{-7}{3} = -\frac{7}{3}\)

24. Let \(f(x) = \frac{3}{x^2} \) and \(g(x) = x + 1 \). Find the following and simplify:
 a. \((f \circ g)(x) = f(g(x)) = f(x+1) = \frac{3}{(x+1)^2} \text{ or } \frac{3}{x^2 + 2x + 1}\)
 b. \((g \circ f)(3) = g(f(3)) = g\left(\frac{3}{3^2}\right) = g\left(\frac{3}{9}\right) = g\left(\frac{1}{3}\right) = \frac{\frac{1}{3} + 1}{3} = \frac{4}{9}\)
25. Brigette Cole has a taco stand. Her daily costs are approximated by \(C(x) = x^2 - 40x + 610 \), where \(C(x) \) is the cost, in dollars, to sell \(x \) units of tacos. Find the number of units of tacos she should sell to minimize her costs. What is the minimum cost?

\[
x = \frac{-b}{2a} = \frac{-(-40)}{2(1)} = \frac{40}{2} = 20 \text{ tacos}
\]

\[
C(20) = 20^2 - 40(20) + 610 = 400 - 800 + 610 = $210
\]

26. Use synthetic division to divide \(6x^3 + 10x^2 + x + 8 \) by \(x - 2 \)

\[
\begin{array}{c|cccc}
2 & 6 & 10 & 1 & 8 \\
 & 12 & 44 & 90 \\
\hline
 & 6 & 22 & 45 & 98 \\
\end{array}
\]

\[6x^2 + 22x + 45 + \frac{98}{x-2}\]

27. Use synthetic division to divide \(-11x^4 + 2x^3 - 8x^2 - 4 \) by \(x + 1 \)

\[
\begin{array}{c|ccccc}
-1 & -11 & 2 & -8 & 0 & -4 \\
 & 11 & -13 & 21 & -21 \\
\hline
 & -11 & 13 & -31 & 21 & -25 \\
\end{array}
\]

\[-11x^3 + 13x^2 - 21x + 21 + \frac{-25}{x+1}\]

28. Express \(f(x) \) in the form \(f(x) = (x - k)q(x) + r \) for the given value of \(k \)

\(f(x) = 2x^3 + x^2 + x - 8; k = -1 \)

\[
\begin{array}{c|ccccc}
-1 & 2 & 1 & 1 & -8 \\
 & -2 & 1 & -2 \\
\hline
 & 2 & -1 & 2 & -10 \\
\end{array}
\]

\[f(x) = (x+1)(2x^2 - x + 2) - 10\]