Graphing (non-calculator) Portion of Exam

1. Find the x- and y-intercepts of the graph of the equation. \(2y - xy + 3x = 4\)
 - x-int:
 \[3x = 4\]
 \[x = \frac{4}{3}\]
 \[\left(\frac{4}{3}, 0\right)\]
 - y-int:
 \[2y \cdot (0)y + 3(0) = 4\]
 \[y = \frac{4}{3}\]
 \[(0, \frac{4}{3})\]

2. Solve using the quadratic formula: \(6x^2 + 5 = 40x - 10x^2\)
 \[-4x^2 - 40x + 5 = 0\]
 \[a = -4\]
 \[b = -40\]
 \[c = 5\]
 \[x = \frac{-(-40) \pm \sqrt{(-40)^2 - 4(-4)(5)}}{2(-4)}\]
 \[x = \frac{40 \pm \sqrt{1600 - 80}}{8}\]
 \[x = \frac{40 \pm 1160}{8}\]
 \[x = \frac{1160 - 8}{8}\]
 \[x = 112\]
 \[\left(\frac{112}{8}, \frac{40}{8}\right)\]
 \[\left(\frac{14}{1}, \frac{5}{1}\right)\]

3. Solve for \(x\):
 - a. \(\left(\sqrt{x + 1}\right)^2 = 3x + 1\)
 \[x + 1 = (3x + 1)(3x + 1)\]
 \[x + 1 = 9x^2 + 6x + 1\]
 \[0 = 9x^2 + 6x\]
 \[0 = x(9x + 5)\]
 \[9x + 5 = 0\]
 \[x = -\frac{5}{9}\]
 - b. \(4x^2 + 4x = 7\)
 \[4x^2 + 4x - 7 = 0\]
 \[a = 4\]
 \[b = 4\]
 \[c = -7\]
 \[x = \frac{-4 \pm \sqrt{4^2 - 4(4)(-7)}}{2(4)}\]
 \[x = \frac{-4 \pm \sqrt{16 + 112}}{8}\]
 \[x = \frac{-4 \pm 12}{8}\]
 \[x = \frac{-4 \pm 12}{8}\]
 \[x = \frac{-4 + 12}{8}\]
 \[x = \frac{8}{8}\]
 \[x = 1\]
 - c. \(\frac{12x + 5}{4x + 5} = 3\)
 \[3(12x + 5) = 4x + 15\]
 \[36x + 15 = 4x + 15\]
 \[30x = 4x\]
 \[32x = 0\]
 \[x = 0\]
 - d. \(4\sqrt{x} - 3 = 0\)
 \[4\sqrt{x} = 3\]
 \[(\sqrt{x})^2 = (3/4)^2\]
 \[x = \frac{9}{16}\]

4. Consider the points \((-6, 4)\) and \((-2, 3)\).
 - a. Find the slope of the line passing through these points.
 \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1}{-4} = -\frac{1}{4}\]
 - b. Find the equation of the line passing through these points. (Put answer in slope-intercept form.)
 \[y - y_1 = m(x - x_1)\]
 \[y - 4 = -\frac{1}{4}(x + 6)\]
 \[y - 4 = -\frac{1}{4}x - 3\]
 \[y = -\frac{1}{4}x - 3 + 4\]
 \[y = -\frac{1}{4}x + 1\]
5. Let \(f(x) = \sqrt{x + 9} \), \(g(x) = x^2 + 2 \) and \(h(x) = 2x - 1 \). Find the following:
 a. \(f(0) \)
 \[
 f(0) = \sqrt{0 + 9} = \sqrt{9} = 3
 \]
 b. \(g(x+2) \)
 \[
 g(x+2) = (x+2)^2 + 2 = x^2 + 4x + 4 + 2 = x^2 + 4x + 6
 \]
 c. \((h-g)(x) = h(x) - g(x) \)
 \[
 (h-g)(x) = (2x-1) - (x^2 + 2) = 2x - 1 - x^2 - 2 = -x^2 + 2x - 3
 \]
 d. \((g \circ f)(x) = g(f(x)) \)
 \[
 (g \circ f)(x) = g(\sqrt{x + 9}) = (\sqrt{x + 9})^2 + 2 = x + 9 + 2 = x + 11
 \]
 e. \((h \circ g)(-2) = h(g(-2)) = h((2)^2 + 2) = h(6) = 2(6) - 1 = 11
 \]

6. Let \(f(x) = 3x - 2 \) and \(g(x) = x^2 + 3 \). Find the following:
 a. \((f-g)(2t) \)
 \[
 (f-g)(2t) = f(2t) - g(2t) = 3(2t) - 2 - ((2t)^2 + 3) = 6t - 2 - (4t^2 + 3) = -4t^2 + 6t - 5
 \]
 b. \((f \circ g)(x) = f(g(x)) \)
 \[
 (f \circ g)(x) = f(x^2 + 3) = 3(x^2 + 3) - 2 = 3x^2 + 9 - 2 = 3x^2 + 7
 \]

7. Find the vertex of the parabola \(f(x) = -3x^2 + 12x - 20. \)
 \[
 x = \frac{-b}{2a} = \frac{-12}{2(-3)} = \frac{-12}{-6} = 2
 \]
 \[
 f(2) = -3(2)^2 + 12(2) - 20 = -12 + 24 - 20 = -8
 \]
 \[
 \text{vertex: } (2, -8)
 \]

8. State the domains of the following functions in interval notation.
 Example: \(f(x) = \sqrt{x + 2} \) \hspace{1cm} \text{Domain: } [-2, \infty)

 a. \(f(x) = 3\log_4(x) \) \hspace{1cm} \text{Domain: } (0, \infty)

 b. \(f(x) = 3e^{2x} \) \hspace{1cm} \text{Domain: } (-\infty, \infty)

 c. \(f(x) = \frac{x^2}{x-8} \) all real's except 8 \hspace{1cm} \text{Domain: } (-\infty, 8) \cup (8, \infty)

9. Consider the following graph: (if none exist, write none)
 a. On what intervals (if any) is the graph increasing? \((-\infty, 2] \]
 decreasing? \([2, \infty) \]
 constant? \(\text{none} \]
 b. Is \(y \) a function of \(x \)? \textbf{Explain your reasoning.}
 \(\text{yes, passes vertical line test}\)
c. Does this graph have an inverse function? **Explain your reasoning.**
No, does not pass **Horizontal Line Test**

d. What is the domain of this function?
\((-\infty, \infty)\)

e. What is the range of this function?
\([-2, 0]\)

10. Consider the following function
\[f(x) = -2x^9 + 4x^3 - 17 \]

a. What is the maximum number of zeros?
9

b. What is the maximum number of turning points?
8

c. Draw an end behavior diagram for the function.

11. Consider the graph of
\[f(x) = x^2 - 5x \]

Use your knowledge of transformations to write an equation for the following description:
\[
\begin{align*}
(+4 \ outside) & \quad (-3 \ inside) \\
(\text{+4 outside}) & \quad (-\text{3 inside})
\end{align*}
\]

The graph of \(f \) is shifted four units up, reflected about the y-axis, and vertically stretched by a factor of 3.

\[
g(x) = 3f(-x) + 4 = 3((-x)^2 - 5(-x)) + 4
\]

\[
= 3(x^2 + 5x) + 4
\]

\[
= 3x^2 + 15x + 4
\]

12. Let
\[g(x) = -x^2 + 4 \]

Find the following (if they do not occur, write "none") and sketch the graph of \(g \) on the provided coordinate plane.

a. Describe the sequence of transformations from
\[f(x) = x^2 \text{ to } g. \]
reflect over x-axis
shift up 4

b. Identify any interval(s) of the domain for which the function is increasing.

\[(-\infty, 0] \]

c. Identify any interval(s) of the domain for which the function is decreasing.

\[[0, \infty) \]

13. For the following rational function, give all vertical, horizontal, and slant asymptotes of the graph of the function (if any such asymptotes exist).

\[f(x) = \frac{3x^2 + 21x + 35}{2x^2 + 18x + 40} \]

VA:
\[
\frac{2x^2 + 18x + 40}{a} = 0
\]

\[
x^2 + 9x + 20 = 0
\]

\[
(x + 4)(x + 5) = 0
\]

\[
x + 4 = 0 \quad x + 5 = 0
\]

\[
x = -4 \quad x = -5
\]

HA:
\[n = 2 \quad m = 2 \quad n = m \]

\[y = \frac{a}{b} = \frac{3}{a} \]

\[y = \frac{3}{a} \]

OA: none
14. For the function \(g(x) = \frac{x^2 + 2x + 1}{x - 4} \) find the following asymptotes. Write each asymptote as an equation.
 a. All horizontal asymptotes (if any exist)
 \[n = 2, \quad m = 1 \]
 \[n > m \]
 \[\text{no HA} \]
 b. All vertical asymptotes (if any exist)
 \[x - 4 = 0 \]
 \[x = 4 \]
 c. All slant asymptotes (if any exist)
 \[y = x + 6 \]

15. Find the inverse of the function \(f(x) = -3 + \frac{3}{x + 8} \)
 \[x = -3 + \frac{3}{y + 8} \]
 \[(x + 3)^3 = \left(\frac{3}{y + 8}\right)^3 \]
 \[(x + 3)^3 = y + 8 \]
 \[x + 3 = \sqrt[3]{y + 8} \]
 \[x = \sqrt[3]{y + 8} - 3 \]
 \[f^{-1}(x) = (x + 3)^3 - 8 \]

16. Find the inverse function of the following, if they exist. If the inverse function does not exist, state why
 a. \(f(x) = \frac{3x + 4}{5} \)
 \[x = \frac{3y + 4}{5} \]
 \[5x = 3y + 4 \]
 \[5x - 4 = 3y \]
 \[\frac{5x - 4}{3} = y \]
 \[f^{-1}(x) = \frac{5x - 4}{3} \]
 b. \(f(x) = (x - 5)^2 \)
 \[x = \sqrt{2y + 3} \]
 \[x^2 = 2y + 3 \]
 \[x^2 - 3 = 2y \]
 \[y = \frac{x^2 - 3}{2} \]
 \[f^{-1}(x) = \frac{x^2 - 3}{2}, \quad x \geq 0 \]
 c. \(f(x) = \sqrt{2x + 3} \)
 \[x = \sqrt{2y + 3} \]
 \[x^2 = 2y + 3 \]
 \[x^2 - 3 = 2y \]
 \[y = \frac{x^2 - 3}{2} \]

17. a. Compute: \(x^3 - 4x^2 + 3x + 18 \) divided by \(x - 3 \).
 \[\begin{array}{c|cccc}
 3 & 1 & -4 & -3 & 18 \\
 & 3 & -3 & -18 & 0 \\
 \hline
 & 1 & -1 & -6 & \end{array} \]
 \[x^2 - x - 6 \]
 b. Using your answer from part a, find all the real zeros of the function algebraically. Be sure to include the multiplicity of repeated zeros.
 \[f(x) = x^3 - 4x^2 - 3x + 18 \]
 \[f(x) = (x - 3)(x^2 - x - 6) \]
 \[= (x - 3)(x - 3)(x + 2) \]
 \[x - 3 = 0 \quad x + 2 = 0 \]
 \[x = 3, \quad x = -2 \]
 \[\text{mult. 2} \]
18. Consider the following function: \(f(x) = x^3 - 3x^2 - 24x - 28 \)

a. Verify that \((x+2)\) is a factor of \(f(x)\)

\[
\begin{array}{c|cccc}
-2 & 1 & -3 & -24 & -28 \\
 & 1 & 10 & 28 & 0 \\
\end{array}
\]

\(x+2 \) is a factor of \(f(x) \)

Since the remainder is zero

b. Find all of the zeros of \(f(x) \) and include their multiplicity.

\[
f(x) = (x+2)(x^2 - 5x - 14) = (x+2)(x+2)(x-7)
\]

\(x = -2, x = 7 \) \(\text{w/ mult. of 2} \)

19. Use the properties of logarithms to expand the expression as a sum, difference, and/or multiple of logarithms. (Assume all variables represent positive numbers.)

\[
\log_a \left(\frac{\sqrt{y}}{z^2} \right) = \log_a \sqrt{y} - \log_a z^2
\]

\[
= \frac{1}{2} \log_a y - 2 \log_a z
\]

20. Condense the expression \(2 \log_{10} (t+1) - \log_{10} z + \log_{10} 2 \) as much as possible.

\[
alog_a \left(\frac{\sqrt{y}}{z^2} \right) = \log_a \sqrt{y} - \log_a z
\]

\[
= \frac{1}{2} \log_a y - 2 \log_a z
\]

21. Expand the expression \(\log_{10} \left(\frac{x \cdot y}{z} \right) \) as much as possible.

\[
= \log_{10} x + \log_{10} y - \log_{10} z
\]

22. Given \(f(x) = \log_5 (x+5) \), find the following. If any do not occur, write “None”.

a. Domain: \((-3, \infty)\)

b. Range: \((-\infty, \infty)\)

c. Vertical Asymptote: \(x = -3 \)

d. Horizontal Asymptote: none

e. \(x \)-intercept(s): \((-2, 0)\)

f. Sketch graph of \(f \), including asymptotes
23. Solve the following for \(x \).
 a. \(4 = \log_2(x - 5) \)
 \[2^4 = 2^{\log_2(x-5)} \]
 \[16 = x - 5 \]
 \[21 = x \]
 b. \(\log_2 x + \log_2(x + 2) = \log_2(x + 6) \)
 \[\log_2 x(x+2) = \log_2(x+6) \]
 \[x(x+2) = x+6 \]
 \[x^2 + 2x = x + 6 \]
 \[x^2 + x - 6 = 0 \]
 \[(x+3)(x-2) = 0 \]
 \[x = -3 \]
 \[x = 2 \]

24. Solve the following system of equations using either substitution or elimination. (Choose one of the methods and show your work!)
 \[
 \begin{align*}
 2(3x+2y &= 3) \\
 -3(2x-3y &= 15) \\
 3x + 2(-3) &= 3 \\
 3x - 6 &= 3 \\
 3x &= 9 \\
 x &= 3 \\
 \end{align*}
 \]
 \[\begin{align*}
 6x + 4y &= 60 \\
 -10x + 9y &= -45 \\
 13y &= -39 \\
 y &= -3 \\
 \end{align*} \]
 \[(3, -3) \]

25. Solve for \(x \) and \(y \) in the following system. If the system does not have a solution or has infinitely many solutions indicate so.
 \[2 \left(-\frac{1}{2}x - 3y = 1 \right) \]
 \[x + 6y = 0 \]
 \[\begin{align*}
 -x - 6y &= 2 \\
 x + 6y &= 0 \\
 0 \neq 2 & \text{ NO SOLUTION} \\
 \end{align*} \]

26. Solve the following system of equations. If the system does not have a solution or has infinitely many solutions indicate so.
 \[
 \begin{align*}
 x - y + 3z &= 1 \\
 2(2y - z &= 2) \\
 -3y + 2z &= 0 \\
 \end{align*}
 \]
 \[\begin{align*}
 4y - 2z &= y \\
 -3y + 2z &= 0 \\
 \end{align*} \]
 \[y = 4 \]

\[\begin{align*}
 x - 4 + 3(6) &= 1 \\
 x - 4 + 18 &= 1 \\
 x + 14 &= 1 \\
 x &= -13 \\
 \end{align*} \]
\[(-13, 4, 6) \]
27. Identify the variables and set up the system of equations for the following problem. Do not solve.

A clothing company borrows $775,000. Some of the money is borrowed at 8%, some at 9%, and some at 10% simple interest. How much is borrowed at each rate if the total annual interest is $67,500 and the amount borrowed at 8% is four times the amount borrowed at 10%?

\[
x + y + z = 775,000
0.08x + 0.09y + 0.10z = 67,500
x = 4z
\]

Calculator Portion of Exam

28. The endpoints of the diameter of a circle are (-5,1) and (7,6).
 a. Find the center of the circle.

\[
\left(\frac{-5+7}{2}, \frac{1+6}{2} \right) = (1, \frac{7}{2}) = (1, 3.5)
\]

b. Find the radius of the circle.

\[
r = \sqrt{(-5-1)^2 + (1-3.5)^2} = \sqrt{36 + 6.25} = 6.5
\]

c. Find the standard form of the equation of the circle.

\[
(x-1)^2 + (y-3.5)^2 = 6.5^2
\]

29. A high school had an enrollment of 600 students in 1985. During the next 20 years, the enrollment increased by approximately 40 students per year.
 a. Write a linear equation giving the enrollment N in terms of the year t. (Let t=5 correspond to the year 1985.)

\[
m = \frac{40}{5} = 8 \quad \text{and} \quad t = 0 \Rightarrow 1980
\]

\[
y - y_1 = m (x-x_1)
\]

\[
y - 600 = 40 (x - 5)
\]

\[
y - 600 = 40x - 200
\]

\[
N = 40t + 400
\]

b. If this constant rate of growth continues, predict the enrollment in the year 2010.

\[
2010 : t = 30 \quad N = 40(30) + 400 = 1600
\]

30. A rock is dropped from the top of a 200-foot cliff that overlooks the ocean. How long will it take for the rock to hit the water?

\[
S = -16t^2 + V_0t + S_0
\]

\[
0 = -16t^2 + 0t + 200
\]

\[
0 = -16t^2 + 200
\]

\[
16t^2 = 200
\]

\[
t^2 = 12.5
\]

\[
t = \pm 3.54 \text{ seconds}
\]
31. A manufacturer of chairs has daily production costs (in dollars per chair) of $C(x) = 0.3x^2 - 12x + 5400$ where x is the number of chairs produced. How many chairs should be produced each day to yield a minimum cost per unit?

\[x = \frac{-b}{2a} = \frac{-(-12)}{2(0.3)} = \frac{12}{0.6} = 20 \text{ chairs} \]

32. Find the number of units that produces a maximum revenue. The revenue R is measured in dollars and x is the number of units produced.

\[R = 50x - 0.0002x^2 \]

\[x = \frac{-b}{2a} = \frac{-50}{2(-0.0002)} = \frac{-50}{-0.0004} = 125,000 \text{ units} \]

33. Solve the following for x:
 a. $\ln x - \ln(x + 1) = 3$
 \[\ln \frac{x}{x+1} = 3 \]
 \[\frac{\ln x}{\ln(x+1)} = e^3 \]
 \[(x+1)(\frac{x}{x+1}) = 20.09 \]
 \[x = 20.09(x+1) \]
 \[x = 20.09x + 20.09 \]
 \[-19.09x = 20.09 \]
 \[x = \frac{20.09}{19.09} = 1.05 \]
 \[x \approx 1.05 \text{ or No solution} \]

 b. $b/310 = \frac{(600(1+e^{2x})}{(1+e^{2x})} - \frac{600}{1+e^{2x}})
 \[(1+e^{2x}) = 600 \]
 \[1+e^{2x} = 1.9355 \]
 \[e^{2x} = 0.9355 \]
 \[\ln e^{2x} = \ln 0.9355 \]
 \[2x = -0.0667 \]
 \[x = -0.0333 \]

 c. $5 + 30e^{0.47x} = 10$
 \[30e^{0.47x} = 5 \]
 \[e^{0.47x} = \frac{1}{6} \]
 \[\ln e^{0.47x} = \ln \frac{1}{6} \]
 \[0.47x = \ln \frac{1}{6} \]
 \[x = \frac{\ln \frac{1}{6}}{0.47} \]
 \[x \approx -3.812 \]

34. Suppose a certain amount of money is invested at 11% interest compounded continuously, and suppose the balance in 10 years has grown to $19,205.

 a. Find the initial investment.
 \[A = Pe^{rt} \]
 \[19,205 = Pe^{(0.11 \cdot 10)} \]
 \[\frac{19205}{e^{(0.11 \cdot 10)}} = P \]
 \[P \approx 6,392.79 \]

 b. Find the time to double.
 \[A = Pe^{0.11t} \]
 \[\ln 2 = \ln e^{0.11t} \]
 \[\ln 2 = 0.11t \]
 \[\frac{\ln 2}{0.11} = t \]
 \[t = 6.3 \text{ years} \]
35. Paul swallows 18 grams of radioactive dye. Three weeks later, only 8 grams remain in his system. How much will remain in his system 10 weeks later?

\[y = y_0 e^{-kt} \]
\[8 = 18 e^{-k(3)} \]
\[\frac{4}{9} = e^{-3k} \]
\[\ln \frac{4}{9} = \ln e^{-3k} \]
\[-0.8109 = -3k \]
\[k = -0.2703 \]
\[y = 18 e^{-0.2703(10)} \]
\[y = 1.2 \text{ grams} \]

36. Certain bacteria grow according to the model \(y = Ae^{bx} \) where \(y \) denotes the number of bacteria after \(x \) hours have elapsed. If the initial population of the bacteria is 15,000 and after four hours the population is 25,000, find

a. the value of \(A \).

\[A = 15,000 \]

b. the value of \(b \).

\[\frac{25000}{15000} = e^{4b} \]
\[1.6667 = e^{4b} \]
\[\ln 1.6667 = \ln e^{4b} \]
\[0.5108 = 4b \]
\[b = 0.1277 \]

c. the number of bacteria expected after seven hours.

\[y = 15000 e^{0.1277(7)} \]
\[y = 36,671.3 \]

37. Students in a 7th grade class were given an exam. During the next two years, the students were retested several times. The average score \(g \) can be approximated by the model \(g(t) = 93 - 20 \log_{10}(t + 1) \), where \(t \) is the time in months.

a. What was the average score on the original exam?

\[g(0) = 93 - 20 \log (0+1) \]
\[g(0) = 93 \]

b. After how many months did the average score drop below 50?

\[50 = 93 - 20 \log (t+1) \]
\[-43 = -20 \log (t+1) \]
\[2.15 = \log (t+1) \]
\[10^{2.15} = 10^{\log (t+1)} \]
\[141.25 = t+1 \]
\[140.25 = t \]