1. Consider a set S and a binary operation $*$, i.e., for each $a, b \in S$, $a * b \in S$. Assume $(a * b) * a = b$ for all $a, b \in S$. Prove that $a * (b * a) = b$ for all $a, b \in S$.

2. Prove that there exist infinitely many integers n such that $n, n + 1, n + 2$ are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.]